Allied Mathematics 2024- 2027 Batch

SCHEME OF THE PROGRAMME

S.No	Sem.	Class	Title	Inst. Hours	Credit	Exam hours	Marks		Total marks
							CIA	SE	
1		I.B.Sc (C.S) I.B.C.A I.B.Sc I.T	Numerical Methods	4	4	3	25	75	100
2	Ι	I.B.Sc(Chemistry), I.B.Sc(Physics), I.B.Sc(Geology)	Algebra, Analytical Geometry (3D) and Trigonometry	4	4	3	25	75	100
3		I M.Com	Operations Research	4	4	3	25	75	100
4		I.B.Sc(Chemistry), I.B.Sc(Physics), I.B.Sc(Geology)	Calculus and Fourier Series	4	3	3	25	75	100
5		I.B.Sc (C.S) I.B.C.A I.B.Sc I.T	Mathematical Statistics	4	4	3	25	75	100
6	Ш	I.B.Sc (C.S) I.B.C.A I.B.Sc I.T	Operations Research	4	4	3	25	75	100
7		I.B.Sc(Physics), I B.Sc(Geology), I B.Sc(Chemistry)	Differential equations and Transforms	4	4	3	25	75	100

Semester-I	ALGEBRA, ANALYTICAL GEOMETRY	Course Code:
AC I	OF 3D AND TRIGONOMETRY	
Allied Mathematics for		
Chemistry, Physics		
&Geology		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 -Recalling		
Cognitive	K2 - Understanding		
Level	K5 - Applying K4 - Analyzing		
	K5 - Evaluating		
	K6 - Creating		
Course	• To gain the knowledge about the summation of series		
Objectives:	• To find inverse of a matrix using Cayley Hamilton theorem.		
	• To understand straight line and sphere		
	• To know the expansion of $\sin n\theta$, cosine $n\theta$		
	• To aquire the knowledge about hyperbolic and inverse hyperbolic	olic functions.	
UNIT	CONTENT	HOURS	
Unit I	BINOMIAL, EXPONENTIAL AND LOGARITHMIC		
	SERIES. Binomial Exponential and logarithmic series (formulae only)	12 Hours	
	Summation and approximation related problems only.		
	Chapter3: Sec 10, Chap 4: Sec 3, 9		
Unit II	MATRICES		
	Eigen values and Eigen Vectors - Verifications of Cayley	12 Hours	
	– Hamilton's Theorem – Simple Problems.		
	Chapter 2: Sec 16.1-16.3		
Unit III	THE RIGHT LINE AND THE SPHERE	12 Hours	
	Right line – Coplanar lines – conditions for the		
	coplanarity of lines - Number of arbitrary constants in the		
	equations of the straight line - the shortest distance between the		
	two lines – Spheres – Definitions – the sphere through four		
	given points – Equations of a circle.		
	Chapter 3: Sec 3.1,3.2, Chapter 4: Sec 4.1, 4.2 & 4.3	10 11	
Umitiv	EXPANSION OF IRIGONOMIETRIC FUNCTIONS	12 Hours	
	$expansion of Sin \theta$, $\cos n\theta$ and $\tan n\theta$, $\sin \theta$, $\cos \theta$		
	3.511 Ocos U = 5111 problems.		
Unit V	HVDEPROLIC FUNCTIONS	12 Hours	
	Hyperbolic functions – Relations between hyperbolic functions	14 110ul S	
	and circular Trigonometry functions_Inverse hyperbolic		
	functions – Simple problems.		
	Chapter 4: Sec 1.2.2.2&2.3		
L	Sampton ii Nee Ajajaran		

Text Books:

- 1. T.K. Manickavasagam Pillai and S. Narayanan ,Algebra Volume IS.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 1985.
- 2. Analytical geometry 3D and Vector Calculus, Arumugam and issac, edition 2017.
- 3. T.K. ManickavasagamPillai and S.Narayanan, "Trigonometr y" S.ViswanathanPrintersand Publishers Pvt. Ltd., Chennai.
- 4. T.K. Manichavasagam Pillay and S.Narayanan , Algebra volume II, S.V. Publication, Revised Edition, 1985.

Reference Books:

- 1. M.L. Khanna., Algebra, Edition 4, Jai Prakash Nath Publications, 1957.
- 2. S.Arumugam and ThangaPandiIssac, Trignometry and Fourier series, New gamma Publications, 1999.

Web- Resources:

- http://www.gacariyalur.ac.in/econtent/maths/ug/UG-I-16SACMA1-Allied-Mathematics.pdf
- <u>https://www.google.com/search?client=firefox-b-</u> <u>d&q=%E2%80%A2+https%3A%2F%2Fwww.sakshieducation.com%2FEngg%2FEnggAcad</u> <u>emia%2FCommonSubjects%2FMathMethods-Fourier_Series.pdf</u>++

Course Outcomes:

CO 1:	to know the relation between binomial exponential and summation of series.
CO 2:	to analysis and evaluate the eigen values and eigen vectors.
CO 3:	to recognize three dimensional shapes in the world around them
CO 4:	to finding trigonometric functions using definition and identities.
CO 5:	to apply the formulas for derivatives and integrals of the hyperbolic and inverse hyperbolic functions

Semester-II	CALCULUS AND FOURIER SERIES	Course Code:
AC II		
Allied Mathematics for		
Chemistry, Physics		
&Geology		
Instruction Hours: 6	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives:	 K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing K5 - Evaluating K6 - Creating To differentiate the given functions using Leibnitz's theorem. To introduce the notion of curvature, radius of curvature and Jacobians. To integrate simply by changing the order of the given integration. To acquire the knowledge of solving definite integrals. To gain the knowledge of Fourier series. 		
UNIT	CONTENT	HOURS	
Unit I	DIFFERENTIATION Differentiation- The nth derivative of standard functions-Leibnitz's Theorem for nth derivative of a product of functions (Statement Only) –Simple Problems. Chapter 3: Sec 1.1- 1.6, 2.1-2.2	12Hours	
Unit II	CURVES12HoursCurvature- Radius of curvature in Cartesian only -Total10Differential Coefficients-Jacobians of two and three variables- Simple Problems.12HoursChapter 10 : Sec 2.1-2.4,2.612		
Unit III	DEFINITE INTEGRALS AND INTEGRATION BY PARTS General properties of definite integrals – Evaluation of definite integrals – Integration by parts Chapter 1: sec 11, 12	12Hours	
Unit IV	REDUCTION FORMULA Reduction formula (where n is a positive integer) for12Hours1). $\int_a^b e^{ax} x^n dx$ 2). $\int_a^b sin^n x dx$ 3). $\int_a^b cos^n x dx$ 4). $\int_0^x e^{ax} x^n dx$ 5). $\int_a^{\frac{\pi}{2}} sin^n x dx$ 6). Without proof $\int_a^{\frac{\pi}{2}} sin^n x cos^m x dx$ - and illustrations. Chapter 1 : Sec 13.1-13.5		
Unit V	FOURIER SERIES Definition of Fourier Series – Finding Fourier Coefficients - Use of Odd and Even functions in evaluating Fourier Coefficients – Half range sine & cosine series Chapter 6 : Sec 1-5.	12Hours	

Text Book:

1.T.K. Manickavasagam Pillai and S.NarayananCalculusVol -I, S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2011.

2. T.K.Manickavasagam Pillai and S.Narayanan Calculus vol –II, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai, 2011.

3. . T.K.Manickavasagam Pillai and S.Narayanan Calculus vol –III, S.Viswanathan Printers and Publishers Pvt.Ltd., Chennai, 2011.

Reference Books:

- 1. S.Arumugam, Calculus, New Gamma Publishing House, Palayamkottai, 2001.
- 2. An Introduction to Laplace Transforms and Fourier Series , April 2014 by Phil Dyke

Web- Resources:

- http://www.gacariyalur.ac.in/econtent/maths/ug/UG-I-Allied-Maths-Calculus.pdf
- <u>https://www.sakshieducation.com/Engg/EnggAcademia/CommonSubjects/MathMethods-Fourier_Series.pdf</u>

Course Outcomes:

CO 1:	to calculate the nth derivatives of the function
CO 2:	to sketch curves in Cartesian coordinate systems.
CO 3:	to apply the reduction formulae for finding integration.
CO 4:	to find the area by changing the given order of integration.
CO 5:	to calculate the Fourier coefficients

Semester-II AC III Allied Mathematics for Chemistry, Physics &Geology	DIFFERENTIAL EQUATIONS AND TRANSFORMS	Course Code:	
Instruction Hours: 4	Credits: 4	Exam Hours: 3	
Internal Marks -25	External Marks-75	Total Marks: 100	

Cognitive Level	K1 -Recalling K2 -Understanding K3 -Applying K4 - Analyzing		
	K5 - Evaluating		
Course	K6 - Creating To study the concents of linear equations		
Objectives:	 To study the basic concepts of partial differential equations. 		
	 To understand the concepts of Laplace Transform. 		
	• To find the inverse Laplace transform of the given function	ns.	
	• To gain the knowledge of vectors		
UNIT	CONTENT	HOURS	
Unit I	LINEAR EQUATIONS WITH CONSTANT	12Hours	
	COEFFICIENTS		
	Linear equations with constant coefficients –Evaluation of		
	particular integral of x^k where k is a positive integerande $ax f(x)$, –		
	Simple Problems.		
	Chapter II : Sec1-4		
Unit II	PARTIAL DIFFERENTIAL EQUATIONS	12Hours	
	Partial differential Equations -Formation of equations		
	by elimination of constants and arbitrary functions- Definition of		
	General, Particular, Complete and singular integral (Geometrical		
	meaning not expected) - Chapter IV:Sec 2.1, 2.2, 3, 4		
Unit III	LAGRANGE'S METHOD	12Hours	
	Lagrange's method of solving the linear equations $(Pp+Qq=R)$ –		
	Simple Problems - Solutions of first order equations of the		
	standard forms $F(p,q)=0$, $F(x,p,q)=0$, $F(y,p,q)=0$, $F(z,p,q)=0$,		
	F(x,p)=F(y,q) -Clairaut's form –Simple Problems.		
	Chapter IV : Sec 5.1 – 5.4 &6.1		

Unit IV	LAPLACE TRANSFORM Definition – Laplace transform of functions e^{at} , cosat, sinat, t ⁿ where n is a positive integer –Shifting theorems –Laplace transform of $e^{-at}f(t)$ –Laplace transform of e^{-at} cosbt, e^{-at} sinbt and $e^{-at}f(t)$ – Laplace transform of $f'(t)$ and $f''(t)$ –Simple Problems. Chapter V :Sec 1 -5	12Hours
Unit V	INVERSE LAPLACE TRANSFORM Inverse transform of standard forms –Application to the solution of ordinary differential equations with constant coefficient involving the above transformations –Simple Problems. Chapter V: Sec 6-9	12Hours

Text Books:

- 1. T.K. Manickavasagam Pillai and S.NarayananCalculusVol -II
- 2. I, S.Viswanathan Printers and Publishers Pvt. Ltd., Chennai, 2011

Reference Books:

- 1. M.L.Khanna, Differential equations, Jai Prakash Nath&Co,Meerut, 14thEdition.
- 2. M.K.Venkatraman, Engineering Mathematics (Volume II), National Publication & Co 1983.

Web-Resources:

- https://www.math.ust.hk/~machas/differential-equations.pdf
- https://web.stanford.edu/~boyd/ee102/laplace.pdf

Course Outcomes:

CO 1:	to solve the linear differential equations
CO 2:	to find the complete solution of partial differential equations.
CO 3:	to find the Laplace transform of the given functions
CO 4:	to solve the ordinary differential equations using inverse Laplace transform.
CO 5:	to make the students gain wide knowledge in vectors

Semester-I AC I	Numerical Methods	Course Code:
Allied Mathematics for CS, B.C.A& IT		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 -Recalling		
Cognitive	K2 -Understanding		
Lovol	K3 -Applying		
Level	K4 - Analyzing		
	K5 - Evaluating		
Course	Ko - Creating		
Course	• To introduce the various topics in Numerical methods.		
Objectives:	• To make understand the fundamentals of algebraic equations.		
	• To apply interpolation and approximation on examples.		
	To solve problems using Numerical Differentiation and integration	ion.	
	• To solve linear systems, numerical solution of ordinary differen	tial equations.	
UNIT	CONTENT	HOURS	
Unit I	FUNDAMENTALS OF ALGEBRAIC EQUATION:	12 Hours	
	Solution of algebraic and transcendental equations-Bisection		
	method- ,Newton Raphson method -linear system of equations -		
	Gauss elimination method .		
	Chapter2:Sec2.1,2.2,2.5 Chapter 6: Sec 6.3.2		
Unit II	INTERPOLATION AND APPROXIMATION:	12 Hours	
	Gauss Jacobi and Gauss Seidal –Interpolation with unequal		
	intervals : Lagrange's interpolation.		
	Chapter 6: Sec 6.4 Chapter 3:Sec 3.9,3.9.1		
Unit III	INTERPOLATION WITH EQUAL INTERVAL:	12 Hours	
	Interpolation with equal intervals-Newton's forward and Backward		
	difference formula		
	Chapter 3:Sec 3.6		
Unit IV	NUMERICAL DIFFERENTIATION AND INTEGRATION :	12 Hours	
	Numerical integration using Trapezoidal, Simpon's 1/3 rule,		
	Simpon's 3/8 rule		
	Chapter 5: 5.4, 5.4.1, 5.4.2, 5.4.3	4.4.77	
Unit V	INITIAL VALUE PROBLEMS FOR ORDINARY	12 Hours	
	DIFFERENTIAL EQUATIONS:		
	1 aylor's series method –Euler's method –Runge Kutta method for		
	Solving 2 order equations		
	Unapter /: Sec /.2, /.4, /.5		

Text Books:

 S.S.Sastry, Introductory Methods of Numerical Analysis, 3rd Edition Prentice Hall of India, New Delhi, 1998.

Reference Books:

- 1. M.K.Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Private Limited, 2001.
- 2. M.K.Venkatraman, Numerical methods in Science and Engineering, National Publisher Company, Fifth Edition, 2001.

Web- Resources:

- https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
- https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression

Course Outcomes:

CO 1:	Know how to solve various problem s on numerical methods
CO 2:	Use approximation to solve problems.
CO 3:	Differentiation and Integration concept are applied
CO 4:	Apply direct methods for solving linear systems
CO 5:	Numerical solution of ordinary differential equations

Semester-II	OPERATIONS RESEARCH	Course Code:
AC III		
Allied Mathematics for CS,		
B.C.A & IT		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 -Recalling		
~	K2 -Understanding		
Cognitive	K3 -Applying		
Level	K4 - Analyzing		
	K5 - Evaluating		
	K6 - Creating		
Course	• To find the solution of the LPP using graphical method		
Objectives:	• To understand different types of LPP		
	• To solve transportation problem using various methods.		
	• To train the students to solve the sequencing problem.		
	• To explore the concepts of Network analysis.		
UNIT	CONTENT	HOURS	
Unit I	LPP-GRAPHICAL SOLUTION METHOD	12 Hours	
	Operations Research : Introduction - Nature and		
	Characteristic features of OR- OR and decision making -		
	Linear programming formulations and graphical solution of two		
	variables- Canonical and Standard forms of LPP.		
	Chapter 1 :Sec 1.1,1.2,1.7 and Chapter 2 :Sec 2.1 - 2.2		
Unit II	LPP-SIMPLEX METHOD	12 Hours	
	Simplex method : Simplex method for $\langle =, =, \rangle$ constraints		
	- Charner's method of penalties – Two phase simplex method. Charter $2 + 5 = 2 + 2 + 2 = 5$		
	Chapter 5 : Sec 5.1,5.5,5.5	13 Hours	
	Mathematical formulation of the problem Degeneracy	12 Hours	
	Transportation problem – Transportation Algorithm –		
	Unbalanced Transportation Problem - Assignment algorithm –		
	Unbalanced Assignment problems.		
	Chapter 6 :Sec 6.1.6.2.6.5.6.7 to 6.9		
Unit IV	SEQUENCING PROBLEMS	12 Hours	
	Processing of n jobs through two machines – Processing		
	of n jobs and k machines – Processing of 2 jobs and through m		
	machines.		
	Chapter 10 :Sec 10.1 - 10.5		
Unit V	NETWORK SCHEDULING BY PERT/CPM	12 Hours	
	Network – Rules of Network construction – Time		
	calculations in Networks – CPM computation – PERT		
	computation.		
	Chapter 21 :Sec 21.1 - 21.7		

Text Book:

1. KantiSwarup, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand and Sons, Educational Publishers, New Delhi, 2002.

Reference Books:

V. Sundaresan, K. Ganesan, Resource Management Techniques, A.R. Publications, 2002.
 J.K.Sharma, Operations Research Theory and Applications, Macmillan India Ltd, 3rd edition, 2006.

Web- Resources:

- https://stemez.com/subjects/science/1HOperationsReseach/1HOperationsReseach.php
- https://www.acsce.edu.in>15...PDF
- https://web.stanford.edu>notesPDF

Course Outcomes:

CO 1:	To formulate the given simplified description of a suitable real work problem as a linear programming models in general, standard and canonical forms.
CO 2:	to interpret different types of LPP.
CO 3:	to solve transportation and assignment problems
CO 4:	to understand the sequencing problem
CO 5:	to aquire the knowledge about network analysis.

Semester-II		Course Code:
AC II	STATISTICS	
Allied Mathematics for CS,		
B.C.A & IT		
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

	K1 Decelling	
	K1 - Kecalling K2 Understanding	
Cognitive	K3 - Annlying	
Level	K4 - Analyzing	
	K5 - Evaluating	
	K6 - Creating	
Course	• To find the solution of the LPP using graphical method	
Objectives:	• To understand different types of LPP	
	• To solve transportation problem using various methods	
	• To train the students to solve the sequencing problem	
	 To explore the concepts of Network analysis 	
UNIT	CONTENT	HOURS
Unit I	INTRODUCTION OF STATISTICS:	12 Hours
	Definition of statistic- characteristics – Uses of statistic in	
	statistics in commerce and business- Primary and secondary	
	data- Definition method of collecting primary data-	
	characteristics of Questionnaire- Sources of secondary data -	
	Classification of data- objectives- Types of classification -	
	Formation of frequency distribution (one way classification)	
	Problem only.(Chap 1: 1.5-1.11, Chap 3: 3.2-3.7, Chap 5: 5.3-	
	5.13)	
Unit II	MEASURE OF CENTRAL TENDENCY:	12 Hours
	Measure of central tendency - Characteristic of a good average-	
	Arithmetic mean, medium, mode, geometric mean harmonic	
	$\begin{array}{c} \text{Hean - Simple problems SPSS-Packages, operation and Uses.} \\ \text{(Chan7.7.4.7.10.7.16.7.22, 7.29.7.35, 7.39.7.41.7.47.7.49)} \end{array}$	
Unit III	MEASURE OF DISPERSION.	12 Hours
	Measure of dispersion – Range, O.D. M.D. S.D and theirs	12 110010
	coefficients – simple problem only.	
	(Chap8:8.4-8.20)	
Unit IV	SKEWNESS AND LINEAR REGRESSION:	12 hours
	Skewness- Types and method – Karl Persons and Bowley's	
	Coefficients of Skewness- Linear Regression: Definition –	
	Regression lines X on Y and Y on X - Properties of Regression	

	Coefficient (without proof) – Simple problem. (Chap 9:9.4-9.12, Chap 11:11.6-11.8)	
Unit V	SIMPLE CORRELATIONS: Simple correlations - Definition – Types of Correlation - Methods of Correlations- Scatter diagram , Karl's Pearson's Coefficient of Correlation and Spearman's Rank correlation coefficient (Repeated & not repeated rank) Properties of Correlation coefficient (No proof) Simple problems. (Chap 10: 10.2,10.4-10.11, 10.25-10.30)	12 Hours

TEXTBOOK :

S.P.Gupta , Statistical Method, Sultan Chand & Sons.

Semester-I-CC IV I.M.Com	OPERATIONS RESEARCH	Course Code:
InstructionHours:6	Credits: 4	ExamHours:3
InternalMarks-25	ExternalMarks-75	TotalMarks: 100

	K1-Recalling		
C	K2Understanding		
Cognitive	K3-Applying		
Level	K4-Analyzing		
	K5-Evaluating		
	K6- Creating		
CourseObj	• To find the solution of the LPP using graphical method		
ectives:	 To understand different types of LPP 		
	• To solve transportation problem using various methods.		
	• To train the students to solve the sequencing problem.		
	• To explore the concepts of Network analysis.		
UNIT	CONTENT	HOURS	
Unit I	LPP-GRAPHICALSOLUTIONMETHOD	18 Hours	
	OperationsResearch:Introduction-		
	NatureandCharacteristicfeaturesofOR-ORanddecisionmaking-		
	Linear programming formulations and graphical solution of two		
	variables- Canonical and Standard forms of LPP.		
	Chapter1:Sec 1.1,1.2,1.7andChapter2:Sec 2.1-2.2	40.77	
UnitII	LPP-SIMPLEXMETHOD	18 Hours	
	Simplex method: Simplex method f or $<,=,>$ constraints		
	-Charner's method of penalties-1 wo phase simplex method.		
Unit III	TDANSDODTATIONDORI EMS	18 Hours	
	Mathematical formulation of the problem – Degeneracy	10 110015	
	Transportation problem – Transportation Algorithm –		
	Unbalanced Transportation Problem- Assignment algorithm –		
	Unbalanced Assignment problems.		
	Chapter6:Sec6.1,6.2,6.5,6.7to6.9		
UnitIV	SEQUENCINGPROBLEMS	18 Hours	
	Processing of n jobs through two machines-Processing		
	of n jobs and k machines – Processing of 2 jobs and through m		
	machines.		
	Chapter10:Sec10.1-10.5		
UnitV	NETWORKSCHEDULINGBYPERT/CPM	18 Hours	
	Network–Rules of Network construction–Time		
	calculations in Networks – CPM computation – PERT		
	computation.		
	Cnapter 21: Sec 21.1-21.7		

Text Book:

1.KantiSwarup,P.K.Guptaand ManMohan, Operations Research, SultanChand and Sons, Educational Publishers , NewDelhi,2002.

Reference Books:

 V.Sundaresan,K.Ganesan,ResourceManagementTechniques,A.R.Publications,2002.
 J.K.Sharma, Operations Research Theory and Applications, Macmillan India Ltd, 3rdedition,2006.

Web-Resources:

- https://stemez.com/subjects/science/1HOperationsReseach/1HOperationsReseach.php
- https://www.acsce.edu.in>15...PDF
- https://web.stanford.edu>notesPDF

Course Outcomes:

CO1:	To formulate the given simplified description of a suitable real work problem as a linear programming models in general, standard and canonical forms.
CO2:	To interpret different types of LPP.
CO3:	To solve transportation and assignment problems
CO4:	To understand the sequencing problem
CO5:	To acquire the knowledge about network analysis.